

PFAS in biota – new needs and requirements

Patrick van Hees

Business Development & Technical Support

Eurofins Environment Testing Sweden AB

Örebro University

March 21

New EFSA TWI value

- Final scientific opinion 17 Sep 20: 4.4 ng/kg BW per week
- PFAS put in connection with several effects:
 - Thyroid gland, liver, fat metabolism (cholesterol), hormones and immune system at longterm exposure, vaccination response, reproductive disorder
- Large decrease in EFSAs TWI (tolerable weekly intake)
 value
- Governing factor: worse response at vaccination of children. Both antibodies and T-cells.
- TDI became TWI to reflect bioaccumulation
- Sum of 4 PFAS: PFOA, PFNA, PFHxS and PFOS. Similar in blood and toxicity (vs vaccination)
- Old TDI PFOS 150, PFOA 1500 ng/kg BW/day (240-2400x diff)
- Greatest exposure through foodstuffs, especially fish, fruit and egg

New EFSA TWI value

- Current Water Framework Directive EQS value for PFOS (fish muscle): 9.1 μg/kg FW with TDI = 150 ng/kg BW/day
- $QS_{biota.hh} = (0.1 \times TL \times 70)/0.115 (TL=TDI)$
- If new TWI is used an EQS value of 38 ng/kg FW is obtained for PFAS4
 - Consequently, a level of around 10 ng/kg FW for each PFAS could be relevant
- Also the revised drinking water directive put further light on intake of PFAS
 - PFAS20 limit value 100 ng/l
 - Total PFAS limit value 500 ng/l
- What LOQs can be found in scientific reports?
 - TemaNord 2019:515: typically 40 ng/kg FW (some up to 200)
 - PFAS Tyrifjorden 2018, M-1318, NGI/NIVA, 2019: 100-300 ng/kg FW
 - Env Pollut 2020, 263A, 113721: 3-5 ng/kg FW (Swe and Int foodstuffs)
- What will the PFAS "picture" look if LOQs are lowered?
- Should we look for precursors also in biota?

Danish Fish

PFAS ng/kg ww	Fish muscle	Fish liver
PFBS	<10	<10
PFBSA	11	123
PFHxSA	(1,7)	(5)
PFHxS	<10	35
PFOA	<10	11
6:2 FTS	10	<10
PFNA	<10	18
FOSA linear	14	40
FOSA-branched	(0,6)	(4,5)
PFOS linear	33	794
PFOS-branched	<10	66
PFDA	(1,5)	12
8:2 FTS	(1,1)	(1)
PFUdA	(3,6)	(31)
PFDoA	(1,6)	(8,3)
PFTrDA	(4,8)	(5)
PFTeDA	<10	<100

- Fish muscle and liver
- No known point source
- PFBSA could be detected but not PFBS
- (P)FOSA significant vs PFOS for muscle
- Around 90% linear PFOS/FOSA
- C4-C13 detected
- PFBSA detected in fish from the US, Canada and Netherlands, in all but one case with PFBS <LOQ (Chu et al., EST 2016, 50, 669)
- Additional PFAS analysed <LOQ

```
= PFBS + precursor
```

= PFHxS + precursor

= PFOS + precursors

= PFOA + precursor

Swedish mussels

	ı
PFAS ng/kg ww	Mussels
PFBS	<10
PFBSA	42
PFHxSA linear	48
PFHxSA-branched	(7,6)
PFHxS	(4,9)
PFOA	<10
6:2 FTS	n.a
PFNA	(3,0)
FOSA linear	139
FOSA-branched	47
PFOS linear	31
PFOS-branched	<10
PFDA	(5,2)
8:2 FTS	(0,8)
PFUdA	11
PFDoA	16
PFTrDA	39
PFTeDA	56

- Swedish west coast
- No known point source
- PFBSA could be detected but not PFBS
- (P)FOSA higher than PFOS
- Around 75% linear FOSA
- (P)FHxSA higher than PFHxS
- C4-C14 detected
- Additional PFAS analysed but below LOQ

= PFBS + precursor
= PFHxS + precursor
= PFOS + precursors
= PFOA + precursor

Swedish Benthic Fauna

Sample	Benthic fauna	
μg/kg ww		
PFBA	<0.3	
PFPeA	0,17	
PFBS	2,5	
PFBSA	1,8	
PFHxA	0,16	
PFHxSA	0,13	
4:2 FTS	<0.1	
PFHpA	<0.1	
PFHxS	0,13	
PFOA	0,13	
6:2 FTS	0,34	
PFNA	0,017	
FOSA	0,61	
PFDA	0,035	
8:2 FTS	0,073	
PFUdA	0,039	
PFDoA	0,52	
PFTeDA	1,0	
PFHxDA	0,10	
MeFOSAA	<0.1	
EtFOSAA	0,15	
PFOS	1,0	

- Creek draining industrial area with waste management and landfill
- "Mixed" organisms
- Concentrations of C4, C6 and C8 sulphonate precursors in the same order as the sulphonates
- Large no of PFAS <0.5 µg/kg FW
- C5-C16 detected
- Invertebrates may not degrade precursors (6:2 FTS) in the same way/extent as in e.g. fish (Langberg et al. EST 2019, 53, 10951)
- Additional PFAS analysed

```
= PFBS + precursor
= PFHxS + precursor
= PFOS + precursors
= PFOA + precursor
```

Norwegian Salmon

_	_
Sample	Salmon 3
	μg/kg WW
8:2FTOH	<1
GenX	<0.1
PFBA	<0.3
PFBSA	0,010
PFBS	<0.01
PFHxA	<0.1
PFHxSA	<0.01
PFHxS	<0.01
PFOA	<0.01
6:2 FTS	0,11
FOSA	0,013
PFOS	0,012
EtFOSA	<0.1
8:2 FTS	<0.01
MeFOSE	<0.1
EtFOSE	<0.1
PFNA	<0.01
PFDA	<0.01
PFUdA	<0.01
PFDoA	<0.01
PFTrDA	<0.05
PFTeDA	<0.01

- Farmed salmon
- PFBSA could be detected but not PFBS
- FOSA and PFOS about same concentration
- Concentrations close to LOQ (besides 6:2 FTS)
- Miljödirektoratet list plus additional precursors shown
- In total 49 PFAS analysed

Thank you for your attention!

- The lowered TWI will require much lower LOQs
- A more complex picture of PFAS emerge
- Precursors incl new ones (e.g. amides) can be important
- Welcome to contact us!

Patrik Karlsson (development chemist PFAS)

